open-courses
  • 公开课笔记
  • CMU 15-445/645 Database Systems
    • Relational Data Model
    • Advanced SQL
    • Database Storage
    • Buffer Pools
    • Hash Tables
    • Tree Indexes
    • Index Concurrency Control
    • Query Processing
    • Sorting&Aggregations
    • Join Algorithms
    • Query Optimization
    • Parallel Execution
    • Embedded Database Logic
    • Concurrency Control Theory
    • Two Phase Locking
    • Timestamp Ordering Concurrency Control
    • Multi-Version Concurrency Control
    • Logging Schemes
    • Database Recovery
    • Introduction to Distributed Databases
    • Distributed OLTP Databases
    • Distributed OLAP Databases
  • UCB - CS162
    • OS intro
    • Introduction to the Process
    • Processes, Fork, I/O, Files
    • I/O Continued, Sockets, Networking
    • Concurrency: Processes & Threads
    • Cooperating Threads, Synchronization
    • Semaphores, Condition Variables, Readers/Writers
    • Scheduling
    • Resource Contention & Deadlock
    • Address Translation, Caching
    • File System (18,19,20)
    • Distributed Systems, Networking, TCP/IP, RPC (21,22)
    • Distributed Storage, Key-Value Stores, Security (23)
    • Security & Cloud Computing (24)
    • Topic: Ensuring Data Reaches Disk
  • MIT - 6.006
    • Sequence and Set Interface
    • Data Structure for Dynamic Sequence Interface
    • Computation Complexity
    • Algorithms and Computation
    • Structure Of Computation
    • Graph & Search
    • Tree & Search
    • Weighted Shortest Paths
    • String Matching, Karp-Rabin
    • Priority Queue Interface & Implementation
    • Dictionary Problem & Implementation
    • Sorting
    • Dynamic Programming
    • Backtracking
    • Self-Balancing Tree
  • MIT - 6.824
    • 2PC & 3PC
    • Introduction and MapReduce
    • RPC and Threads
    • Primary/Backup Replication
    • Lab: Primary/Backup Key/Value Service
    • Google File System (GFS)
    • Raft
    • Lab: Raft - Leader Election
    • Lab: Raft - Log Replication
  • Stanford-CS107
    • 原始数据类型及相互转化
    • 指鹿为马
    • 泛型函数
    • 泛型栈
    • 运行时内存结构
    • 从 C 到汇编
    • 函数的活动记录
    • C 与 C++ 代码生成
    • 编译的预处理过程
    • 编译的链接过程
    • 函数的活动记录续、并发
    • 从顺序到并发和并行
    • 信号量与多线程 1
    • 信号量与多线程 2
    • 复杂多线程问题
    • 函数式编程 - Scheme 1
    • 函数式编程 - Scheme 2
    • 函数式编程 - Scheme 3
    • 函数式编程 - Scheme 4
    • 函数式编程 - Scheme 5
    • Python 基础
  • MIT - 6.001 - SICP
    • 什么是程序
    • 程序抽象
    • 替代模型
    • 时间/空间复杂度
    • 数据抽象
    • 高阶函数
    • Symbol
    • 数据驱动编程与防御式编程
    • 数据抽象中的效率与可读性
    • 数据修改
    • 环境模型
    • 面向对象-消息传递
    • 面向对象 - Scheme 实现
    • 构建 Scheme 解释器
    • Eval-Apply Loop
    • Normal Order (Lazy) Evaluation
    • 通用机
    • 寄存器机器
    • 子程序、栈与递归
    • 在寄存器机器中执行
    • 内存管理
  • MIT - 6.046
    • Randomized Algorithms
    • Skip Lists
  • System Design
    • Twitter
    • Cache Consistency & Coherence
  • DDIA 笔记
    • Replication
    • Transactions
    • The Trouble with Distributed Systems
    • Consistency & Consensus
  • Papers We Love
    • Consistent Hashing and Random Trees (1997)
    • Dynamic Hash Tables (1988)
    • LFU Implementation With O(1) Complexity (2010)
    • Time, Clocks, and the Ordering of Events in a Distributed System (1978)
    • Dapper, a Large-Scale Distributed Systems Tracing Infrastructure (2010)
    • Gorilla: A Fast, Scalable, In-Memory Time Series Database (2015)
  • Release It 笔记
    • Anti-patterns & Patterns in Microservice Architecture
  • Database Design
    • Log Structured Merge (LSM) Tree & Usages in KV Stores
    • Prometheus
Powered by GitBook
On this page
  1. Stanford-CS107

函数式编程 - Scheme 4

第二十二课

generate power set recursively

; ps => power-set
> (ps '(1 2 3))
(() (2) (3) (2 3)          ; 不含 1 的集合
  (1) (1 2) (1 3) (1 2 3))  ; 含 1 的集合

> (ps '())
(())


(define (ps set)
  (if (null? set) '(())
      (append (ps (cdr set))
              (map (lambda (subset)
                (cons (car set) subset))
                (ps (cdr set))))))

上面的实现非常的精简,就是把一个 set 的 power-set 看作是两部分的集合:

  • 不含 set 第一个元素的 power-set (记为 ps-rest)

  • 包含 set 第一个元素的 power-set (记为 ps-all)

其中 ps-all 可以看作是第一个元素与 ps-rest 之间的每个元素的分别取合的集合。但以上实现有一个缺点,就是 (ps (cdr set)) 被执行了两次:

(define (ps set)
  (if (null? set) '(())
      (let ((ps-rest (ps (cdr set))))
        (append ps-rest
                (map (lambda (subset)
                  (cons (car set) subset))
                  ps-rest)))))

这里的 let-binding 实际上是 lambda 的语法糖:

(let ((x _x))
     ((y _y))
  (a x y))
; =>
((lambda (x y)
     (a x y)) _x _y)

Permutation

> (permute '(1 2 3))
((1 2 3) (1 3 2)
 (2 1 3) (2 3 1)
 (3 1 2) (3 2 1))
(define (permute items)
  (if (null? items) '(())
    (apply append
      (map (lambda (elem)
        (map (lambda (permutation)
               (cons elem permutation))
             (permute (remove items elem)))
        items))))

Scheme 中原始类型的存储举例

> 4
4
> "hello"
hello
> '(1 2 3)
(1 2 3)
> (cons 1 (cons 2 (cons 3 '())))
(1 2 3)

4、"hello"、'(1 2 3) 在内存中如下图所示:而 '(1 2 3) 实际上是 (cons (1 (cons 2 (cons 3 '()))) 的语法糖。

参考

Previous函数式编程 - Scheme 3Next函数式编程 - Scheme 5

Last updated 6 years ago

Stanford-CS107-lecture-22